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It is shown that the nonstationary SchrOdinger equation does not satisfy a 
well-known adiabatical principle in thermodynamics. A "renormalization proce- 
dure" based on the possible existence of a time-irreversible basic evolution 
equation is proposed with the help of which one comes to agreement in a variety 
of specific cases of an adiabatic inclusion of a perturbing potential. The ideology 
of the present article IV rests essentially on the ideology of the preceding articles, 
in particular article I. 

1. INTRODUCTION 

In (T1) 1 we demonstrated a difficulty of logic in the application of the 
SchrOdinger equation (SE) to the nonstationary case. No difficulty of this 
type exists in the stationary case. This fact, combined with the well-known 
efficiency of the SE in the stationary case from the point of view of 
experiment, shows that one has to consider the following alternative: The 
fundamental evolution equation of a microsystem is time-irreversible (T1). 
In the stationary case it coincides with the stationary SE, the role of the 
corresponding irreversible additional term gradually increasing (starting 
from zero) with the "increase of nonstationarity" of the system. In essen- 
tially nonstationary cases this term may play an important role and lead to 
clear-cut disagreement with experiment, a verification of which seems to 
already exist [cf. the discussion of some experimental results in (T1)]. The 

1By (T1), (T2), (T3), and (T5) we denote, correspondingly, articles parts I, II, Ill, and V of our 
series "Nonstationary Quantum Mechanics" (Todorov, 1980a-d). 
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considerations in (T3) showed the presence of disagreement between 
classical mechanics and the nonstatic SE in the case of potentials rapidly 
varying With time exactly in the regions of space in which the classical 
approximation should hold best. This phenomenon is evidence of the 
nonphysical character of the SE in the nonstationary case and it encour- 
ages further investigations in the field of time-dependent potentials. 

It is natural to turn now to slowly varying potentials with time and see 
whether the SE has nonphysical peculiarities in this case too. It was said 
already that the magnitude of the additional irreversible terms must 
decrease with the decrease of the speed of inclusion of the nonstationary 
perturbation. But if we examine time intervals which are large enough, the 
insignificant difference between the SE and the hypothetical basic evolu- 
tion equation may lead to noticeable effects due to some kind of slow 
accumulation. We certainly do not know yet the exact form of the basic 
equation and cannot compare its solution with the solution of the SE for 
such cases. But practice has taught us what one should expect in adiabatic 
(in the present work we use this word as a synonym for very slow) 
processes and one must check whether the SE gives the expected result and 
whether some known peculiarities of the hypothetical equation (T1) can be 
employed for the remoVal of eventual nonphysical terms in the solutions of 
the SE. This is precisely what will be done in what follows. 

2. DISAGREEMENT BETWEEN THE SE AND AN 
ADIABATICAL PRINCIPLE IN THERMODYNAMICS 

A well-known principle in thermodynamics says that in an adiabatic 
process the system of interest will pass through a well-defined series of 
intermediate states (belaveen the initial and final ones), any one state being 
uniquely determined in any moment t by the values of the thermodynami- 
cal parameters in this t. In other words, our system is practically in 
equilibrium at any moment t and this state of equilibrium corresponds to 
the values of the thermodynamical parameters (volume, pressure, external 
fields) at t. 

It would be impossible to construct a coherent picture of thermody- 
namics without this fundamental principle. Its full agreement with experi- 
ment is not, and cannot be, doubted. 

An important feature of the above principle is the fact that no definite 
law of the variation of the thermodynamical parameters is fixed. They can 
vary arbitrarily with time, as long as this variation is slow enough (adia- 
batic). Concretely, the system may come in different ways to some fixed 
final values of its parameters and its final state is always uniquely de- 
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termined by these parameters and not by the way in which they are reached 
if the variation of the parameters is adiabatic. 

In the case when the system of interest does not exchange heat with 
other bodies the above may be simply illustrated with the consideration by 
Landau and Lifschitz (1964) of the variation of the entropy ,S(R) in the 
presence of a slowly varyirig parameter R(t). Indeed, dS/dt= 
(dS/dR)(dR/dt) can be represented as a series aldR/dt+a2(dR)2/dt 2 
+ .... a i being constants and dR/dt the corresponding small quantity. We 
have always dS/dt>~O, so that a I =0  since the first-order term changes its 
sign together with dR/dt. This immediately shows that dS/dR = 0 in such 
processes--a result which will be shown to be completely out of reach of 
the SE, the solution of which is strongly influenced by the specific depen- 
dence of R on t. 

It is a truism that the solution of the SE cannot be given in a simple 
analytical form in the general case. For that reason we shall employ the 
theory of nonstationary perturbations (TNSP) in its ordinary form to 
the case of a system with a discrete energy spectrum considering that the 
perturbation included is small. It will be shown that the SE agrees with the 
said principle only in the first-order approximation of the TNSP generally, 
marked disagreement appearing in the higher-order approximations. In 
cases when the adiabatic perturbation is not small (after its full inclusion) 
this will, evidently, mean that the SE is in complete disagreement with the 
adiabatic principle since the order of magnitude of the corrections is the 
same as that of the nonperturbed solutions then. 

For the sake of simplicity we shall examine real-valued complete 
orthonormal sets of eigenfunctions of the initial nonperturbed Hamiltonian 
H 0 =H;. An additional assumption will be the coincidence of the initial 
state ~pi of our system with the nondegenerated ground state ~k~ ~ of H 0 (the 
cases of one-dimensional motion of a single particle, e.g., satisfy the above 
requirements). The former restriction, being by no means substantial, leads 
to a considerable economy of effort. The assumption ff~ =q~0) corresponds 
to a temperature T~ = 0 of the many-body system. We choose such a ~ since 
in a number of cases (inherent semiconductors, dielectrics, superconductors) 
the energy of the electronic ground state ~kt ~ is separated from the first 
excited level by a finite energy gap so that one can be sure that, at least in 
this case, the application of perturbation theory to a many-body system is 
lawful (no zeros in the denominators). 

As we pointed out, the SE will give different final states fly after an 
adiabatic inclusion of an arbitrary weak perturbation V(x)=RW(x) (R<< 1 
being the small parameter and x denoting all the degrees of freedom), 
depending on the way in which V(x) is included and not coinciding, 
generally, with the corresponding ground state ~k~ of the final Hamiltonian 
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Hy = H i + V. Thus the natural requirement that a ground state of H i = H o 
be transformed into a ground state of H: = H o + V in an adiabatic process 
irrespective of the specific way in which V is included is not satisfied by 
the SE. 

We shall need the corrections to the eigenfunctions and eigenvalues of 
H i in the presence of V(x)  as provided by the theory of stationary 
perturbations (TSP) in our discussion. The TSP will be employed in the 
form given in most of the textbooks of quantum mechanics (cf., e.g., 
Davidov, 1963). We are interested here in the correction to ~0) due to 
V(x)  ({~o)) and E~ ~ n = l , 2  .... denoting, correspondingly, the sets of 
eigenfunctions and eigenvalues of Hi), so we start from 

( H~ + V)~x--E1q q (1) 

where +t (the ground state of H:) is given by 

lPl = 2 Cml~ (0)' C m = c ~  ) = c  0 )  + c ~  ) + " "  (2) 
m 

c~ ") being the correction of an order of magnitude a in respect to R(c~ ) = 
8ira), and 

E, =E~ ~ ' ) + ' ' ' ,  (3) 

El (a) being the correction to E~ ~ of an order of magnitude R% Proceeding 
as usually and having in mind that because of our assumption ff(k ~ = 
~k(~ we have ( m l V l n ) = V m , , = ( n l V l m ) = V , , m , n , m = l , 2  . . . .  
([l) =~}0)) one comes to the following expressions for the first four 
corrections to c~ ) and E~~ 

c~ 1) = 0  

e~')= Vk' ( k . 1 )  
hcolk 

e~2) = 1 , Vkl 
-- ~ ~ h2,,,],, 

C (2) = E t VkmVml 

m h2gD lmO~lk 

VklVll  
h2~]k 

(4) 

(4') 

(5) 

(kg= 1) (5') 

~i" = - E ' E ' V , y , . .Vm,  
k m ~120~21k {'0 lm 

+E, v.vA 
k ha~O~k 

(6) 
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v .  v,,,.v,., v~v,,, 
C(k3) J~ 3092 k ~m' O)lm ~30)] k 

Vkl , V?m at_ gkmVmnVnl 

VII ' VkmVml Vkl Vm21 (k---l) 
~3"-~;k ~m 0)2m 2~3001k ~m 'O)2m 

(6') 

c~ 4) = 2Vii E '  , VlkVkmVml 3 V~ , V~Zl + 1 , V~m V~l 
~4 k m ~ r 2 h 4 ~k 0"~47 "~ ~m ~ ~k tO~]k 

, , v,,,.v,,.v,.,v., 
l ,~mt~n,glkVkmVmnVn, 1 ~'~m 

~'4 s 2 2 h '  = k O01kO2"lmO')ln k r 

Vii - - ,  VlkVkmVml 

ra 031k tal l m 

3 ~,v~, v~, 
+k-~ ~' ,4., Zk "4~ (7) 

�9 _ _  2VllVk, , V i  2 C(4)~.Z[ V?' ' VkmVml Vl3IVk, }_ _ _  Z 

v,, , Vk.Vm.V.~ 
k O)lmO)ln 

+ v~ ,V~.Vml 3 v,,vk, ,V~m, 

1 , V?m t VknVnl Vkl t s  VlmVmnVnl 

Vii Z t Z t  VkmVmnVnl V121 t VkmVml + Z 

1 , V12~ Vk~Vml 1 , , , VkmVmnVnp&l 

(Olk p ('0 'mr 1hid Ip 

VkmVmnVnl 1 , VkmVml , V 2 

r m . OqmO~. 20qk WI~ 0~. 

vkl V, mVI.V., V, Yk~ , vd, ] 
n OJlk 

(k4= 1) (7') 
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E~ !) = Vii (8) 

1 ,vi~ 
E~2)---- h ~m W l m 

(9) 

E~ 3) = -~ E t~m O$1kOglm k k r 
(10) 

1 [ '~m' ' VlkVkmVmnVnl VlkVkmVml E~4)-- ~ X X -2vl, X'X' 
k n r k m r 

+ v~ x , v ~ ~2 , v& ] 
k ~ k  ~ ,  1,, _ _  - - -  .o.~ ~ .4,~ 

(11) 

In the above notations ~0jkff i -~kj=(EJ~176 and ~.q... means 
summation over all possible integers q with the exception of q=  1. Let us 
recall that c~ ~) is obtained by using the requirement that the wave function 
be normalized to unity in the a th  approximation of the TSP. 

Now, what one lawfully expects is that the TNSP must ensure correc- 
tions to ~o) which are essentially small (i.e., of the order of magnitude of 
R, R 2, and so on). Because we examine adiabatic processes, the duration 
T=t I - t  i of the process of inclusion of V(x) will be very great (T--->oo), 
and inessential divergent terms of an order of magnitude T, T 2, and so on 
may appear owing to a possible appearing of a constant factor exp[iflT] in 
the wave function; the real quantity fl here depends on R, W(x), and the 
way in which V=RW is included, as we shall see. The final state satisfies 
this requirement (though, as was already said, it does not satisfy the 
adiabatic principle). 

According to our natural requirement the wave function 

oo 

~bl(t)= E dm(t)~b(~ (12) 
mml 

must be of the following form in moment t - - t : :  

~l( t/ ) =eiBT ~ (era +vanishing terms)t~ (0) 
mffil 

(13) 

c m being the same as in equations (2) and the vanishing terms tending to 
zero when T---> oo. In this way we require that one must come essentially to 
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the ground eigenstate of Hy = Hi + V with the improving of the adiabaticity 
of the process. Let us see now what actually happens in a number of 
specific cases. 

Defining ak(t ) with the help of 

ak(t)=ak(t)exp[ --iE(O)t/h ] (14) 

one comes to the following equation for ag(t): 

t ! i60knt" ! t 
a k ( t ) = a k ( t i ) + l  ~n ftivkn(t )e an(t )dt 05) 

In our case (~i =~b~~ so that 

ak( t )=8,k + a(kl)( t ) + a(kZ)( t ) + . . .  (16) 

where atk~)(t) is the ath-order correction to a k ( ~ R  ~) when ~i( t i )=~ ~ 
The term a~ka)(t) is obtained from 

1 fttVkn(t,)eiuk,t,a(na_,)(t,)dt, a(k~)( t ) = -~ ~n 

1 f'vk ~an t l it~knt" (5 - -  1)  P I = - -  ( t ) d t  ih n( t )e a n 
ti 

1 a_ O(t,)dt, (17) 

[the separation of the term containing a~-O(t)  is made for the sake of 
convenience in the calculations since this term is of a different type 
compared to the rest]. 

The first specific case which will be examined is 

V(x,t)=O, - o o < t < < 0 ,  V ( x , t ) = ( t / T ) V ( x ) ,  0 < t < T ,  

r (18)  

which corresponds to t i = O, t I = T, T being assumed to be very large (we 
shall let T tend to oo in the end in accord with the above said). We must 
stress here that T -1 is not an additional small parameter in the problem of 
the same type as R since what we have in fact is the combination t / T  
which is ~ 1, generally. T -  1 characterizes only the adiabaticity of inclu- 
sion of V, the only small parameter in the TNSP series being R. 
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From equations (15)-(17) it follows that we have in the case (18) 

t z V l l  

a~')(t) = 2ihT 

a(kl)(t)=h---f[(tVk: 

(19) 

i V k l  lei~~ ~ - iVk~ 1 
J k  ] ~ ]  ( k ~  1) (20) 

for O < t <  T; Vkm , obviously, denotes ( k l V ( x ) l m  ~ and does not depend 
on t. 

Thus the coefficients dm(T ) [equation (14)] have an expected form in 
moment t =  T with a precision including first-order terms: 

dm(T)=exp[ T( VII + - "  ~-~,--~- "")](b~)+b~))exp(tE(~ (21) 

where 

�9 " ei~oklT 
b~) =8,m, bi D =c l  ') = 0 ,  b~ 1)- c 0) - irk1 [ 1 

- k 1 

(kq=l), the last two terms tending to 0 when T--->o0, the term l/]lT/2ih 
being treated as a result of the decomposition of exp[(TVu/2ih)+ �9 �9 �9 ]-- 1 
+ T V n / 2 i h + . . . .  The inessential exponential factor exp[T(Vn/2 
+ . . .  )/ili]exp[-iE~~ is common for all terms. 

Having in mind the values (19) and (20) of a~ one obtains in the 
second order of the TNSP 

+ O(T)  + O ( T - 2 )  ( k 4  = 1) (22) 

where O(T-" )  is a term ~ T - "  at a moment t=T,  i.e., O ( T - " )  are 
infinitesimal terms in any moment t. 

Representing the second term in the brackets as 

-- t2VHVk,/h2T2jzk - t2V1,Vk,/2h2T2a~]k 
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we see that 

dk( T )=exp[__~ ( Vll iE~ ~ 
--~- + �9 �9 �9 ) ]exp(  h ) 

X [C(k O) +c(1) k hTw~ k iVkl (1--ei'k:) 1 

VllVkle-*Ei~ ~-O(T-1)+O(T -2) (k=/=l) (23) 

with a precision including second-order terms in R. Let us point out that 
the "infinitesimal terms" (as we shall call from now on the terms propor- 
tional to T -n, n = 1,2 . . . .  at t =  T) are essential in the second-order calcu- 
lations since, e .g . ,  

--iVkl T V l l =  VnVkl 

hTtO21k 2ih 2h2to2 k 

is a finite term for all possible values of T. In such a way ~/(T)  is different 
from the ground eigenstate ~1 of H in the second order of the TNSP since 
the term -VuVktexp[-iE~~ in equation (23) is of the same 
order of magnitude as C~k 2) and breaks the postulated natural picture. The 
magnitude of this term does not depend on T, so it is impossible to remove 
it by letting T ~  oo. 

What  mechanism creates the said inconvenient term in dk(T)? The 
answer of this question may not only help in understanding the phenome- 
non, but it can imply the creation of some simple "renormalization 
procedure" for the removal of such terms. 

It is easy to see that the presence of the above term in dk(T ) is due to 
the presence of the constant last term "in the right-hand side of (20). The 
latter term will give a contribution equal to iVklexp[--iE(k~ k ill 
d(kl)(t)(O<t<T). Terms that depend on t only through the factor 
exp(--iE(k~ will appear in d(kq)(t), q>2, too-- th is  will be seen in our 
subsequent discussion. In such a way we shall have in the end 

dl( t ) =fl( t ) + K 1 exp[ -iE~~ /h ] (24) 

where K l are some constants. Equation (12) will thus give 

~l( t ) = ~  ~( t ) + ~ ' (  t ) (25) 
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where 

iE(mO) t ~ ... 
~m -- / abtu~ ~ b ~ ( t ) = ~ f m ( t ) ~  ~ and ~ ' ( t ) =  Kmex p h ]Tm 

rn 

ff~'(t) is, obviously, a solution of the nonperturbed SE ihOqJ~'/~t=Hi~'. 
The decomposition (25) of ffl(t) is an expression of a simple fact discussed 
in any book on differential equations. Namely, the general solution of the 
linear differential equation Lu = w, L being a linear operator, is given by 
u = u  o +u',  where u o is the general solution of the homogeneous linear 
equation Lu o = 0  and u' is a solution of the inhomogeneous equation 
Lu '=  w. If one has found u', then the concrete choice of specific constants 
in u 0 is made in accord with the requirement of definite (e.g., initial) 
conditions for u. In our case L = - i h O / ~ t - H  o, w= V(x, t )~l(x ,  t). The 
TNSP gives a solution ~k~(t)= Y,,,fm(t)~b(m ~ of the corresponding inhomoge- 
neous equation which is combined with q~'(t) in such a way (see above) 
that the initial condition q~i(t;)=,[ ~ is fulfilled. The initial value of ,~' is, 
evidently, 

~b~'(ti)---qJ[ ~ + O ( T - ' ) + " "  + O ( T - " ) + ' . "  (26) 

According to the discussion in (T1) the general evolution equation is 
not the SE but 

ih ~ = H ~  + F~ (27) 

where the last term f '~ creates time-irreversibility. Some additional infor- 
mation (hidden variables) may be necessary for the solution of (27), but in 
the case H = H  o =Hi ,~ i ( t i )~ th e  right-hand side of (26), the result of (27) 
should be equal practically with certainty to 

qJ(t)= ~, e m ( t ) ~ ~  ~ t--->oo (28) 
m ~ l  

if em(ti) are of the same order of magnitude as K,, because qJi(ti) almost 
coincides with ~o) in this case. The time dependence of l em(t)lmy 2 will be 
of the form exp [ -  I(E~ ~ -E~~ I]. [This property of em(t ) is discussed in 
(T1), where it is shown that in the case H =  H o the initial wave packet must 
relax to some eigenstate ~k~ ~ of H o automatically, without any measure- 
ment process.] 

Certainly, one cannot assert a priori that equation (27) is a linear 
equation. But one can well argue as follows: The terms Kmexp[-iE(~~ 
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K m being infinitesimal, appear due to the weak nonadiabaticity in the first 
and (or) next time derivatives of V(x, t) in moment t =  t i. These terms play 
an exaggerated role in the TNSP due to the concept that the homogeneous 
time-reversible equation ihO~b/Ot=Ho~b describes the free evolution of a 
system. According to another concept this is not the necessary equation 
and the role of possible terms of the same order of magnitude (due to the 
weak initial nonadiabaticity in the time-derivatives of V) in dm(t ) is 
expected to be negligible. This is supported by the fact that in the 
homogeneous equation of the type (27) small deviations from ~0) of the 
above-said order of magnitude should disappear in an exponential fashion 
with time while in the SE they are "immortal." And it is worth stressing 
that for a fixed t and T---~oo equation (27) is practically homogeneous in 
the above sense. 

It is logical then to try the simplest possibility in the search for a 
prescription giving the necessary result d~)(T)--K(c~ ~) +infinitesimal 
terms), I KI = 1, K being the same for m, a = 1,2 . . . . .  It consists in the 
striking out of all constant terms K~ ~) in a~)(t), m=2,3 ..... a= l , 2  .... 
(giving the "free" terms K~)exp[-iE~~ in d~ '0) and applying then 
equation (17) for the calculation of -(~+ u m 1)(0 with a subsequent striking out 
of all constant terms which will appear in this way of action in a~+~ 
This prescription, implied by equation (27), turns out to be remarkably 
efficient: Applying it in any specific case we come to the expected form of 
d~")(t), a= 1,2 . . . . .  We are not able to give a general mathematical proof 
of this, but we shall show that it is true for a number of cases in which one 
can come to comparatively large a (0t=3,4) without disproportionate 
efforts. The efficiency of the prescription in all these cases leaves little 
doubt about its general applicability [all possible V(x, t) and ot = 1,2 . . . .  ]. It 
is worth emphasizing that the prescription is highly unequivocal: All the 
constant terms are clearly discernible from the rest in any order of 
magnitude and no grounds for speculation exist. 

The removal of the constant terms in a~)(t) has two effects on ~k(t). 
One of them consists in a "renormalization" of the initial conditions with 
some infinitemisal terms (we shall have now ~(ti)=~p~~ 
this affects the normalization of Lp(t) as well: 

f l4,(t)12 dx-- f l /(t,)12 ax= l +O(r - ' )+  ... ) 

This effect is insignificant since it is most probably simply an expression of 
the fact that in this way we cut off some transitory processes having a 
characteristic relaxation time "r---,h/(E~2 ~ -E~ ~ in which time infinitesimal 
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terms of the order of magnitude of g,,,, m > 2, have not yet died away. So 
this infinitesimal breaking of the initial conditions and the normalization 
of ~b(t) need not be taken seriously. 

The second effect is much more interesting. The SE for a~)(t) is 

ih---~ = ~, (mlV( t)lk )ei'~ t ) (29) 
k 

from which it follows that the cutting off of the constant terms in a~l)(t), 
having an order of magnitude O(T-  ~) in the case (18), modifies the SE 
with terms O(T -1) in the second order of the TNSP, and, in spite of the 
infinitesimal character of these additional quantities, the accttm~ation of 
their influence for large T turns out to be important in the said order. In 
such a way we come to a property which was discussed in the beginning: 
The equation(s) satisfied by a,, after the application of our prescription 
tend to the SE with the improving of the adiabaticity of the process 
(T--->oo) giving, nevertheless, essentially different results when tf -ti~T---> 
o0. This may serve as an illustrative example to the discussion of the 
possible role of symmetry-breaking terms in the quantum Liouville equa- 
tion in the end of (T2). 

We can check now directly the efficiency of our prescription in several 
specific cases. 

3. APPLICATION OF THE PRESCRIPTION TO SPECWIC 
CASES 

We shall denote now by a~m~)'(t) the expressions obtained from equa- 
tion (17) with a subsequent cutting off of the infinitesimal constant terms 
in a~m~)(t). Returning to our case (18) we obtain now 

a~,),(t)___ t 2 t"11 
T 2ih 

Vkl [ i 
a~')'(t)-~ h~'-~,, ~ t - -T lk )  ei'~ (k§ l) (30) 

for 0 ~ t ~ T. Using these expressions for the calculation of a~)'(t), m ;~ 2 
(no such terms appear in a~) ' ( t ) , a=  1,2 . . . .  ) resulting from equation (17) 
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we obtain 

1 ( t 3 ~ , g i  2 t2 ~ , ~/r, 2 
a}2)'(t) = ~ ~ fO,. 2 w]. 

t _ _  Mr _ _  
af) ' ( t )  = ~ fo,. folk 

it 3 3t 2 
+ VnV, I 2fo1 k 2fO~k 

Vs: ) (31) 

ifo~k folk fo~n folk fOlk 

)] 3_~ ei~o,, t (k=# 1) 
- -  + foL + fo4  

(32) 

The coefficients b(m ~)' can be defined with the help of equation (21) by 
replacing there dm(T ) and b~ ~) by d'm(T ) and b~ ~)'. Having in mind the 
initial conditions and substituting t = T in (30), we obtain 

b~~ = l=c} ~ b(ff )' = 0 =  c(k ~ (k:/: 1) 

b~O'--O=c}O 

b(k o' = e(k l) iVkl = e~ l) + infinitesimal term 
h Tw~ k 

(33) 

(34) 

(35) 

The expressions (8)-(11) about E (") show that the "divergent" terms 
in a~2)'(T)(T--->oo) can be attributed to the fact that the left exponential 
factor in the right-hand side of (21) is actually 

L = exp g t - 5 -  + -5"- + " "  (36) 

Subtracting from d(m2)'(T) the second-order terms, arising from the 
multiplication of b(m~ + b O)' by L exp [ -  iE(l~ we come to 

b • 2 ) "  _ ~(2) 
1 - - ' - !  

bf)'--- ~ '  folm folk 

VkraVml ( i 
-X '  foL ~ +  

(37) 

Tfol~ ~ ~lk 

I + + 3 

T2w~k W21k ~ ~ 

--c(, 2) +infinitesimal terms ( k ~  1) (38) 
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In such a way we have the expected picture for d~'~ in the second 
order. 

Using (31) and (32) one obtains 

t' Y~' Z' Z a~3)'( t)-- ~ ' 1  ~ " ~  Z t VlkVkmV.1 t3 r VlkVkmgml 

k m 091kC~dlm k m r 

t 2 VlkVk~V~I  t 2 , VlkVkmVml 

k r m 2i k s 

Vl~t 5 V(k 
6 ~k' tdlk 

3Vllt 2 V 2 ~ t , .  lk 
+--T i - "  7 ~ 

vl,t" v?~ + v,,t~ y , v?~ 
2i ~ ' Wlk k 0~31k 

- V~lt6 ] (39) 
48i ] 

We shall bring our calculations as far as the fourth order in R. For 
that reason we shall not fill pages with the entire kilometrical expression 
for a(k3)'(t), k=/:l, necessary for the higher-order calculations but shall 
adduce only those terms that are essential for the fourth-order approxima- 
tion in R (i.e., which do not give factors of the type T -n, n=  1,2,..., in 
a~)(T), m ffi 1,2 .... ). This approximate expression a~3)'(t) obtained with the 
help of our prescription is equal to 

a(k3),(/)~ ~ 1  ( --totkt3 ~n 'Z'VknVnmVmlm Oalnt~lm Vilt3~n'VknVnl(20~lk Oaln at" ~lk2 ) 

3v1,, . v k . v . ,  v k , ,  3 

V~l t3 , v?. V~lV~t 5 5v~lv~t" 5v~lv~t 3 ) 
2Wlk ~ to2n 8Wlk 8iW2k + 2W]-g e"~k't 

[ 3t 2 , vk.v.mv.l 
+ [  iw2k ~n '~m a~l.6Ol. 

2# 2 ~ , ~ ,  VknV~mVm, 
O)lk n m OJ21n~Olm 

-- it--~-2 X ' X "  Vk"Vn'~'Vml'+ 

(Olk n m s 

6it2V11 ~ ,  Vk"Vnl 9Vu t2 

tO]k n tOln 2ioa]k 
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X ~ n ' VknV~'o~-----~ + --3iVl't2w,k ~n ' VknI"n'w]~- + 4iVk't2--~]k ~n ' o~,. V~n 

3Vk,t 2 , V2~ 15Vk,V2t 2 ] e i~'~,t 
2iW2k ~n Wln + 2iW~k J h3T 3 

(k=/= 1) (40) 

where the term in the square brackets can be neglected in the calculation 
of a~k4)'(t), kv ~ 1, but cannot be neglected in the calculation of a~4)'(t). 

From equation (39) it follows that we have in fact 

[ T(E} 1) E~ 2) E~ 3) )] 
L--exp -~ - ~ - + - - f - + T + . . .  (41) 

Our further way of action is practically identical to the one which led 
to the calculation of b~2)',m=l,2 . . . .  : We subtract from d~ = 
1, 2 ... .  , the third-order expression (in R) resulting from the multiplication 
of b~(~ +b,~(l)' +b~): by Lexp[-iE~~ which gives 

bO ), = 1 [ _ VlkVkmVml V}k 1 VlkVkmVml 
1 h3 ~ ~k t ~  ' ~02k~O lm {" VII ~kttO31k iT ~kt~m t ~)31ktO Ira 

l ' ' V l k V k m V m l 3 V l l  V.~4k ) 
- 2iT~k ~" 2 2 + - ~ "  m s k O~l k 

= c~ 3) + infinitesimal terms (42) 

b(3), cO) + l (i~lk~n,~m,VknVnraVml 2i ~n,~m,VknVnmVml 

i 6)lk ~.~n t ~  ' VknVnmVml "-e--~---5iVll ~ '  VkmVraltolm 
O) lnO~2m r 

4VI1 , VkmVmi 3iVil , VkmVmi 
OJlk m O)31m 

4iVkl , VI 2 3Vkl t V}m 
O)ik (dim 2ia~2~ ~O2m + 

6v ,v  
ia~ k 

+O(T-2)+O(T 3) 

---c~ 3) +infinitesimal terms ( k ~ l )  (43) 



254 Todorov 

the terms O(T-2)  and O(T-3 )  being, obviously, inessential for the calcu- 
lation of b(k 4)'. This means that our prescription gives an "actual adiabatic 
result" in the third order too. The same applies to the fourth order in R, in 
which we adduce only those terms in a(4m)'(t), m= 1,2 ... . .  which do not 
contain negative degrees of T at t = T: 

[ T / E[1) E~2)  E(3) E(14) )1 
L = exp[ ~ - T -  + - r -  + -a - +  -3 -  + "  "" ( ~ )  

1 [ t 5 ~ t Z  t VlkVknVnmVml 3 F l i t  6 VlkgkmVml 
a~4)'(t) -- ~ ~ ~ ~'~ ' ~  24 ~ ' ~-'~ ' n m 001k~Olmbdln k m O~lkt'Olm 

9Vllt 5 VlkVkmVm, t 6 , V2k Vi 2 
lO/ ~ ' ~ "  ~k --~' " k m O)2kC'Olra 18 (~Oik O)lm 

1 It s , V2k Vi 2 

30i ~ O~2----k ~ m ' t ~ l m - - - -  

3V2t6 S "  V2k V 2 t  7 V?k + _ _  

24i ~k'~lk 16 "" 2 k folk 

7Vl21t 5 Vl2k 

V , y ~ . ~ m V m ~  t 4 , , V~,YkY~mVm~ 

k n m ('OlktOlmtOln 

5Vllt42 ~ ' ~ "  VlkVkmV'nl 
k m O~3kO~lm 

+ ~ 
4 2 2 ~ 'k  ~lm 6~lklOlm k 

3t4 ' V~k V2 9V2t4 V2 V21ts I ~ 5 ~ , ' ~ m  ~ ,  ~---&+ 

- it+ 
p ~lm~lntOlP 

(45) 
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3Vii i  4 VkmVm.V.1 t 4 V 2 Vk.V~, (it+5) E ' ' l m  ~n ' 
20)1 k E tEtra n COimCO2n 3COlk m 601m COln 

/I2 VknVnl t4 ~2 4 t  4 , lm ~m ' lm ~ t  VknVnl 
3~lk Em ~lm E tn  r 2~lk CO2m T COIn 

V 2 t 4 ( ~ +  3t 15 )~m' VkrnVm'' _--:-----.lg~- W~k) 
4COlk icolk 4CO2k COlin ~OJlk k 

X 
VkmVml 5V121 t4 gkmgml Vkl t4 [. 5 ) 

' 4-G ,t ' ` + G  

X E r E  t VlmVmnVnl Vklt4~ t ~ t VlmVmn~rnl gllVkl t4 
m n colmOOln COlk O)21mcoln COlk 

t 5 ' V i 2 +  - i t+ 

+ iWlk W2k 091m 2Wlk Wlm 

+ m VnVk, t4  ~2 iV3Vk, t  7 7V3Vkl t  6 ~ ,  lm + + 
r ~ '  r 48colk 48CO~k 

7iV~Vk, t  5 105V3Vk,t  4 ] 
8o~]k 24CO4k J e'~k't 

(k~l) (46) 

Equations (44)-(46) and the above straightforward procedure give 

b(m 4)' =C(m 4) +infinitesimal terms, m =  1,2 .. . .  (47) 

in moment t = T .  

As we have mentioned above, the expressions for b~ ")', m = 1, 2 , . . . ,  a = 
1, 2 . . . .  are obtained with the help of the decomposition 

A A 2 
e x p [ A ] = l + ~ ( + ~ - . l  + " "  

in which 

E(e~" r? '  e, ~3' E," / 
Afih~ 2 + - T + - T + - T  - + '  ! 
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(it is evident that the ,nth term inside the brackets will be equal to 
E~")/(n+ 1) for n > 5). As long as our calculations involve terms ~ R  '~, a < 4, 
we need only those terms of the above decomposition in which a < 4. It is 
worth writing them down: 

[ T / E(1) E(2) E(3) E~ i )] 
exp -~ (--~-- + --~-- + --~-- + --'-f-- + �9 �9 �9 

[ Vn 1 ,Vi 2 ~I+T~+~ 
3ih 2 ~m Wlm 

+ ~  ~.~ ' ' V l k V k m V m l  Vii V 'i Vi2 
4ih3 k m tOlktOlm 4ih3 ~'~ W2k 

1 , , , V l k V k m V m n V n l  

5ih 4 bOlktDlm~Oln 

2VH , , VlkVkmVml 
5ih4 ~k ~m 2 gO I k go 1 m 

+ v?k l ,v;k ,v;.)  

t t V l k V k m V m l  +T2 -- V2 ----Vii ' V : k  VII E ~m (OlkgOlm 
8h 2 6h 3 ~k t~ 8h 4 , 

V 2 ,V12k 1 , V  2 ,V2m) 

iV131r 3 iV2T  3 V 2 V4nT 4 p lk  , + ~ + ~ ~ ~ ~ (48)  
48h 3 24h 4 k lk 384h 4 

(b~ a)' is obtained after the subtraction from d~a)'(T) of those terms in 
(b~) '+bO) '+  . . .  +b(ma-D')exp(-iE~~215 side of equation 
(48)] which contain Ra). In such a way the simple prescription formulated 
above gives the necessary result in the specific ease (18): In the approxima- 
tion of fourth (and, little doubt, any) order of magnitude in R we have 

• ( c ~ ) +  c(2 ) + c~ ) + " "  + infinitesimal terms)exp[- iE~~ 

m - - l , 2  . . . .  (49) 

Acting analogically, one obtains that our prescription "works" in 
other specific cases too, eliminating the corresponding nonadiabatical 
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terms. Thus, for instance, in the case 

V(x,t)=O, t<0 ,  

t 2 
Z(x, t)= ~ V(x), 0 < t <  T, V(x, t)= V(x), t/> r (50) 

we have 

[ "r /E(l)  E (2) E[ 3 ) )]  

�9 _ . _ / ~  +--q  + _ T . .  + d ~ ( T ) = e x p  ih ~ 3 5 "'" 

c (o) c(O +c(~) +c(~ ) X (  m "]- m "1" " " " + infinitesimal terms)exp[ -iE~~ 

m =  1,2 ... .  (51) 

(the calculation being carried out by us as far as third-order terms in R; 
the nth term, n > 3, in the exponential sum, no doubt, is equal to E~n)/2n + 
1). 

In the case 

V(x, t ) = 0 ,  t<  T= -or/2to, 

e it~ -~ e - i to t  

V( x, t ) =  V( x )cos tot= V( x ) 2 ' T < t < 0 ,  

V(x,  t )  = v ( x ) ,  t ~ o (52) 

our prescription gives 

• (c~) + c~ ) + c~ ) + c~ ) + infinitesimal terms)exp [ -iE~l~ ] 

(53) 

[the calculation being carried out again as far as third-order terms; the 
initial condition, as always, if ~ki(ti)=ff~~ ]- 

The expressions (49), (51), and (53) show that the quantity fl in 
exp[iflT] [see equation (13)] depends on R, W(x) (through Et ~), a=- 1,2 ... .  ), 
and the way in which V(x, t) is included (different types of series ~ =  lh~El ~) 
in the exponents, h a being the corresponding coefficients). It can be easily 
seen, besides, that constant terms will appear in any a~'O(t) for arbitrary 
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a =  1,2 . . . . .  mffi2,3,. . .  (through a straightforward solution of the SE using 
the TNSP). The role of these terms is determined by the specific depen- 
dence of V(x, t) on t. For  instance, in the case (50) the finite "nonphysical" 
terms in the TNSP solution will appear for the first time in the terms 
containing R 3. Analogically, it is fairly obvious that in the case V(x, t)-- 
tnT-nV(x),  n = 3 , 4  . . . . .  such terms will appear in order n +  1 of the TNSP 
because of the proportionality of the constant terms in a(kl)(t), k # l ,  to 
T - n .  In such a way one comes to the conclusion that the SE will not 
produce nonadiabatic terms only in cases when all the time derivatives of 
V(x, t) are equal to zero in moment t i and vary adiabatically with time for 
t > 6- This can be easily checked in the case 

V(x)e~t--V(x, t ) ,  - o o < t < 0 ,  V(x , t ) - -V (x ) ,  t>O (54) 

where e is a small positive constant ( e ~ + 0 ) .  But one must be careful in 
cases of this type ( t f - t i = T = o o )  since the TNSP can turn out to be 
inapplicable in some of them. This is so, e.g., in the case V(x , t )= 
V(x)e~tcosc~t, - oo < t < 0 ,  V(x, t ) =  V(x), t>0 ,  e-->+0, ~--> +0,  r162 
The reason for this lies in the fact that, because of the infinite number of 
oscillations of cos t~t in ty - t~, one can no longer assert that the final result 
must differ slightly from ffi (with terms He, e 2, etc.). 

Up to here we considered only the discrete spectrum case. In the next 
article (T5) of the present series we shall examine the continuous spectrum 
case. 

4. CONCLUSION 

We shall summarize first briefly the results of the preceding discus- 
sion. 

It was shown in Section 2 that the SE does not satisfy the adiabatic 
principle formulated there. This result is rigorous and is easily obtained 
from the TNSP. The prescription for the removal of the corresponding 
"'nonadiabatic" terms was developed on purely intuitive grounds. Namely, 
it was assumed that in adiabatic processes the perturbation procedure for 
the unknown irreversible equation is built in a similar fashion to the one of 
the SE. In this procedure we omit only such infinitesimal terms as are due 
to the concept that the corresponding homogeneous equation is the time- 
reversible SE and which cannot play a noticeable role in a time-irreversible 
equation of the type (27). This is not what one would call a mathematically 
rigorous way of proceeding. Still, it is really surprising that an expected 
property of the said equation [the existence of which is motivated in (T1)] 
helps to obtain a desirable result in the specific cases examined. 
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It is worth recalling here that according to the arguments in (T1) and 
(T2) the inherent physical properties of a given system the evolution of 
which is described by a relevant time-irreversible equation are sufficient 
for the description of all the characteristic features of the system (including 
the thermodynamical properties of a pure quantum state). The SE is too 
sensitive to any nonadiabaticity, even when it is very slight aJad appears in 
higher-order time derivatives of the perturbation (of. the discussion at the 
end of Section 3), to be the correct equation in nonstationary situations. A 
correct equation must be insensitive to small nonadiabatic effects. This 
was illustrated in the beginning of Section 2. 

There exists an interesting similarity between our way of action and 
the prescriptions of quantum field theory for the removal of ultraviolet 
divergences appearing in the perturbation series. Namely, the nonvanish- 
ing nonphysical terms which are infinite in field theory and finite in our 
case appear in the second and higher nonvanishing orders of magnitude of 
perturbation theory. A part of such terms in any order of the theory higher 
than (and in our case equal to) 2 is compensated by the (in our case 
infinitesimal) counter terms of the prescription for the lower orders, but 
any new order of magnitude inevitably contains some (in our case infinites- 
imal) terms which have to be cut off on the spot in order to avoid trouble 
in higher orders. More important than these formal similarities is the fact 
that our discussion here is in accord with the point of view that a physical 
approach to the problem of the existence of undesirable terms may not 
only formulate some prescription for their removal but explain them as 
well. 
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